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Abstract. The decentralized nature of P2P network increases robust-
ness because it removes single points of failure, however, traditional
Byzantine consensus does not work in P2P network due to Sybil attack
while existing Sybil-proof consensus based on compute power can’t resist
adversary with dominant compute power. We proposed the sky frame-
work to apply opinion dynamics in P2P network for consensus, as well
as the sky model to maximize performance. The sky framework is Sybil-
proof through trust relationships and with it consensus may emerge from
local interactions of each node with its direct contacts without topol-
ogy, global information or even sample of the network involved. The sky
model has better performance of convergence than existing models in
literatures, and its lower bound of fault tolerance performance is also
analyzed and proved. Comparing to compute power based consensus,
our approach enables disarming faulty or potentially malicious nodes by
unfollowing them. To the best of our knowledge, it’s the first work to
bring opinion dynamics to P2P network for consensus.
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1 Introduction

P2P network is well known on its decentralized nature that increases robustness
because it removes single points of failure. Emerging cryptocurrencies(e.g., Bit-
coin) demonstrate the demand of consensus over P2P network with decentraliza-
tion still retained [1]. However, to keep decentralization, no logically central and
trusted authority vouches for a one-to-one correspondence between entity and
identity, thus makes it difficult to resist Sybil attack [2], wherein the adversary
creates a large number of pseudonymous identities to gain a disproportionately
large influence. Nodes in a P2P network may present Byzantine failure [3], which
encompasses both omission failures (e.g., crash failures, failing to receive a re-
quest, or failing to send a response) and commission failures (e.g., processing
a request incorrectly, corrupting local state, and/or sending an incorrect or in-
consistent response to a request). Traditional Byzantine consensus with either
signed or unsigned messages generally needs a node to determine value according
to the values from majority or at least a sample of all the nodes [3–12], however,
they will fail with the presence of Sybil attack. Existing consensus based on
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compute power is Sybil-proof but can’t resist adversary with dominant compute
power [13, 14].

We proposed the sky framework to apply opinion dynamics in P2P network
for consensus, as well as the sky model to maximize performance. In the sky
framework, each node is identified by its public key, other nodes follow the node
if they trust it, during the process of consensus, each node broadcasts opinion to
its followers, which then decide new opinions according to their own followees.
In this way, Sybil nodes can freely join the network but they take no effect
in consensus among correct nodes, and the network may asymptotically reach
almost-everywhere consensus from local interactions of each node with its direct
contacts without topology, global information or even sample of the network
involved. The sky model has better performance of convergence than existing
models in literatures, and its lower bound of fault tolerance performance is also
analyzed and proved. Comparing to existing compute power based Sybil-proof
consensus, our approach enables disarming faulty or potentially malicious nodes
by unfollowing them. Theoretic analysis and simulations both show that it can
tolerant failures by at least 13% random nodes while over 96% correct nodes still
make correct decision for initial configuration with convergence ≥ 50%. Simula-
tions also show that on the SNAP dataset of the Wikipedia who-votes-on-whom
network [15] with reasonable latencies, it can reach almost-everywhere consensus
within 70 seconds and tolerant failures committed by 2% top influential nodes.
To the best of our knowledge, it’s the first work to bring opinion dynamics to
P2P network for consensus.

2 Related Work

Sybil Attack Resistance Existing approaches to resisting Sybil attack can
be classified into several categories. One is relying on a certifying authority to
perform admission control [16], however, decentralization is broken by the cer-
tifying authority which may also introduce failures. Another one is remotely
issuing anonymous certification of identity by identifying distinct property of a
node, e.g, utilizing geometric techniques to establish location information [17],
but it can’t tolerance changes of the network environment which is general in
P2P networks. Puzzle computing is also introduced to increase the cost of Sybil
attack, such puzzles involve posing a challenge that requires a large amount of
computation to solve but is easy to verify [18], however, it forces honest nodes
to continually spend computing resources on solving puzzles, and also there’s no
way to resist Sybil attack if the adversary has dominant computing resources.
Sybil prevention techniques based on the connectivity characteristics of social
graphs is another direction [19, 20]. Because of the difficulty to engineer social
connections between attack nodes and honest nodes, this approach is considered
to be more robust over other ones [21–23], and our model is also based on this
approach to resist Sybil attack. Those approaches don’t target at the consen-
sus problem directly but provide an valuable basis for Sybil-proof Byzantine
consensus.



Unbound Participants In a P2P network, peers can join and left freely,
and to keep decentralization, there is no central coordinator and it’s even im-
possible to know the exact number of participants taken part in the consensus,
thus Byzantine failure is even more difficult to tolerant [24]. Consensus for in-
finite many processes or unbound concurrency deals with the problem where
the exact number is unknown or unbound, but they only handle stop failure
instead of Byzantine failure or assume existence of an atomic register [25–30].
Graph theory based Byzantine consensus algorithms can deal with the problem
of unknown participants [24], but they are sensitive to the change of topology
which is common in P2P network. Random walk based Byzantine consensus can
tolerant topology change as well as the case where nodes can join and leave
the network continuously over time and achieve almost-everywhere Byzantine
agreement with high probability [11]. But all of the work referred here don’t
take account of Sybil attack.

Cryptocurrency Cryptocurrency(e.g, Bitcoin) is a form of money that use
cryptography to control its creation and management, rather than relying on
central authorities [31]. Due to its decentralized nature, a cryptocurrency must
provide Sybil-proof Byzantine consensus. Bitcoin provides such a mechanism
through an ongoing chain of hash-based proof-of-work(PoW) [1], which is ac-
tually a puzzle computing based approach. The majority decision of Bitcoin is
represented by the longest chain, which has the greatest proof-of-work effort in-
vested in it. However, one has dominant compute power can control the network
while the rest of the network has no means to resist it, and the proliferation
of ASIC miner and mining pools already leads to the monopoly of compute
power [13, 14]. Ripple/Stellar [32] also use a relationship based solution to resist
Sybil attack similar to ours, however, their algorithm has a major defect that it
relies on the assumption that for a node, if 80% of its followees agree on a opin-
ion, then 80% of all nodes agrees on the same opinion, but the assumption only
stands when a node follows an overwhelming majority of all nodes. As reported,
Ripple/Stellar and other existing solutions like PoS have problem even bigger
than PoW [33, 34].

Opinion Dynamics Opinion dynamics is a field where mathematical-and-
physical models and computational tools are utilized to explore the dynamical
processes of the diffusion and evolution of opinions in human population [35–
37]. Researches on the field shows that opinion might converge when nodes only
take local interactions without centralized coordination or global information
involved [38, 39] . Various models are studied including voter, majority rule, Sz-
najd, social impact, and bounded confidence etc [35, 37], they together with their
derivatives model various types of phenomena, however they aren’t designed to
maximize performance of consensus. Some of the models like voter, majority rule
and Sznajd can be adapted to P2P network, but others can’t, e.g., anyone who
set the persuasiveness and supportiveness for each node in social impact model
will break the decentralization, and bounded confidence model is for continuous
opinions instead of binary ones etc. Committed minority(a.k.a stubborn agent



or zealot) plays a great role in opinion dynamics [40–44]. Communities impact
the speed of convergence too [45–48].

3 The Problem and Datasets for Evaluation

In traditional definition of consensus, specifically binary consensus, each node
has a initial value vi ∈ {0, 1}, the consensus problem is to decide upon a com-
mon value among all nodes. A node is correct if it behaves honestly and without
error. Conversely, a node is faulty. A faulty node may have Byzantine failure
exhibiting arbitrary, erratic and unexpected behavior which may even be mali-
cious and disruptive. However, in a P2P network under an eclipse attack [49],
an adversary can always isolate some number of correct nodes hence almost-
everywhere consensus is the best one can hope for in such networks [50]. Similar
to existing definition [11, 51, 52], almost-everywhere consensus is defined that
up to εn correct nodes in a P2P network agreed on the wrong value, where n is
the network size, and ε > 0 is sufficiently small, the wrong value is 1 if initially
0 is the majority among all correct nodes, and vise versa. Since our approach
to consensus is based on opinion dynamics, we use the term opinion instead of
value in later sections to conform the convention of the opinion dynamics field.

We evaluate our approach on the SNAP dataset of Wikipedia who-votes-
on-whom [15] called as the wiki dataset in later sections, because it presents
trust relationships in the form of votes for administration instead of interest
or mutual friendship relationships. We also impose a constraint which can be
enforced in P2P client of each correct node that indegree >= 10, thus all nodes
with followees less than 10 are removed. Parameters of the result network is
shown in Table 1, and the cumulative distributions of indegrees and outdegrees
are shown in Fig. 1.

Table 1. Datasets parameters

Name Wiki

Nodes Counts 998
Average Degree 33.33
Diameter 5

Average Path Length 2.34
Density 0.033

Average Clustering Coefficient 0.183
Eigenvector Centrality Sum Change 0.029
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Fig. 1. Degree distribution of the wiki
dataset

To facilitate comparing the impact of network size, we also run simulations
upon three uniform networks with size of 100, 1000, 5000 nodes, where each
node has the same degree and connect to each other randomly. Those dataset
are named as uniform-less, uniform and uniform-more respectively.

4 The Framework

We proposed an opinion dynamics framework called the sky framework for con-
sensus over P2P network as described in this section.



4.1 Network Constructing

In our framework, each node in the P2P network is owned by somebody and
identified by a public key. When the owner of node A trusts the owner of node
B, owner of A can set A to follow B in the P2P client, and B is called as followee
while A is called as follower. The network can be abstracted to a directed graph
where each peer is a node, and each trust relationship is a directed edge. To
ensure connectivity and safety, each correct node is constrained by the P2P
client to have at least a minimum number of followees.

4.2 Consensus Process

Nodes in our framework are equally privileged and equipotent participants in
the consensus process in any time as ordinary opinion dynamics. However, we
introduced the concept of round into the consensus process which is commonly
used in existing Byzantine consensus but not in opinion dynamics. Starting from
a initial state as the first round, each correct node determines when to finish its
current round and decides its new value following a common rule according
to its current value and the values of its followees, and then enters the next
round. The common rule used here shapes the opinion dynamics model which
will be introduced in section 5. Note here to avoid centralization no global clock
or coordinator is used, each node decides how and when to enter next ground
separately, thus each node may enter the same round in different time.

A node makes its final decision when enough rounds(e.g., 40) passed. A node
is deciding before making final decision. If a node finally agrees at 0 or 1, then
it’s decided. A node is confused if it’s considered to be safe at neither 0 nor 1.
For each node, by denoting the count of 0 and 1 in its current value and the
values of its followees respectively, the final decision follows the following rules:
1. If n0 > (n0+n1)∗T then agree at 0 and the criteria to agree 1 is similar. The

T constant controls the strategy to be aggressive or conservative. Greater
T results that less nodes to agree at wrong opinion but more nodes to be
confused. We use T = 2/3 in experiments.

2. If can’t agree at 0 or 1, then it’s confused.

4.3 Message Passing

A followee unidirectional broadcasts signed messages to all its followers. We al-
low a faulty node’s signature to be forged by an adversary, thereby permitting
collusion among the faulty nodes. Broadcast is implemented by DHT and asym-
metric cryptography. For a node as followee, all its followers and itself form
a sharing group(known as a “swarm”) identified by the followee’s public key.
Each broadcasted message is signed with the private key of the followee, and the
follwers can check the identity and integrity against the followee’s public key.

Each message broadcasted by nodei is a tuple of (nodeid, round, opinion,
state), where nodeid is the id of nodei, round and opinion is its current round
and opinion, and state ∈ {deciding, decided, confused} .



4.4 Message Handling

According to the well known FLP impossibility [53], consensus cannot be solved
deterministically with even a single crash failure in an asynchronous system
which may fail to deliver messages, delay them, duplicate them, or deliver them
out of order [54], because of the inherent difficulty of determining whether a
process has actually crashed or is only “very slow” [55]. We use a message filter
and a failure detector which can make mistakes by erroneously adding nodes to
its list of suspects [55].

For a node, the message filter will refuse to accept any new messages if it
has already made its final decision, and it will always keep at most one message
from a followee with the largest round denoted as roundmax while roundmax ≥
node.round. The filter is applied when a node receiving a new message as well
as when a node finish a round after broadcasting opinion to its followees.

A failure detector is designed to deal with issues related with asynchronism,
and note it does nothing related with Byzantine failure. The key idea of the
failure detector is that each node maintains a followee nodes list as well as a
suspect nodes list. A message is a valid message for a node marked as node if
msg.round ≥ node.round or msg.state ∈ {decided, confused}. For each node,
initially all followees are in the followee nodes list, in each round, a followee is
moved to the suspect nodes list for the followee nodes list if no valid message
from it in message buffer for a long time(failure detector time out), while a node
is moved from the suspect nodes list to the followee nodes list when a new valid
message from it is received.

With the help of message filter and failure detector, a node can apply the
common rule which shapes the opinion dynamics model in the following way:

1. If a node received a message passed through the message filter, then it should
check whether to apply the common rule or not.

2. On failure detector timeout event for each round, it should check whether
to apply the common rule or not.

3. A node apply the common rule only when its message buffer has messages
from all nodes in its followee nodes list.

5 The Model

At time t, a node receives all the messages broadcasted by its followees at t−dt,
then finishes processing the received messages and broadcast its new opinion at
t. By designating the opinion of nodei at time t to be vi(t), the model can be
expressed as a function F :

vi(t+ dt) = F(vi(t), Vi(t)) (1)

where Vi(t) = [vf1 (t), vf2(t), . . . vfn(t)] and f1, f2, . . . jn are followees of nodei.
In later sections we designate the count of 0 and 1 in {Vi(t), vi(t)} to be n0i(t),
n1i(t) respectively.



However, due to the difficulty to directly analyze the stochastic process of
the interactions between every nodes described in Eq. (1), we build our opinion
dynamics model using mean field theory(MFT). MFT studies the behavior of
large and complex stochastic models by studying a simpler model. Such models
consider a large number of small individual components which interact with
each other. The effect of all the other individuals on any given individual is
approximated by a single averaged effect, thus reducing a many-body problem to
a one-body problem [56]. MFT is widely used in opinion dynamics as an effective
modeling method [37, 38, 42, 45]. By MFT, the opinion dynamics model shaped
by the common rule can be expressed by a continuous differential equation, and
the round can be regarded as dt = 1 in the corresponding equation shown in
Eq. (2).

We denote the densities of correct nodes to be c = c0 + c1 where c0 and
c1 are the densities of correct nodes with opinion of 0 and 1, and densities of
faulty nodes to be f = f0 + f1 + fs where f0 and f1 are the density of faulty
nodes with opinion of 0 and 1 and fs are the density of faulty nodes without
opinions broadcasted. So we have c + f = 1. We also denote densities of all
nodes(including correct and faulty nodes) with opinion 0 and 1 to be a0 and a1
respectively, thus we have a0 = (c0 + f0)/(1− fs) and a1 = (c1 + f1)/(1− fs).

By designating the derivative of c0 on t to be dc0/dt which is actually the
change speed of c0, we can have Eq. (2) where s1 is the probability that a node
flips from opinion 1 to opinion 0, and s0 is the contrary.

dc0
dt

= −
dc1
dt

= c1s1 − c0s0 (2)

We adapt the paradigmatic majority rule(MR) model, and then proposed
the sky model by incorporating the MR model with a simulated annealing(SA)
model we proposed.

5.1 Majority Rule Model

Traditional majority rule(MR) model needs to select a group each time and then
make all of the nodes in the group conform the majority opinion of the group,
however, there’s no such group in the sky framework. We adapt the MR model
by regarding each node and all of its followees as a group, but instead of making
all of the nodes inside the group to have the majority opinion, we just let the
node itself to have that opinion without its followees changed. The rule is shown
as following:
1. If n0i(t) > n1i(t), then set new opinion to 0, and vise versa.
2. If n0i(t) = n1i(t), then select from {0, 1} randomly.

We specify the mean indegree and outdegree of a node to be D. According
to the first rule, a node flips from opinion 1 to opinion 0 only when the count
of its followees with opinion of 1 is less than D/2, and vice versa, and according
to the second rule, when the count of its followees with opinion of 1 equals to
D/2, it has probability of 1/2 to flip, thus for Eq. (2), we can have the following



equation:
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where F (k;n, p) is the cumulative distribution function and d(k;n, p) is the prob-
ability mass function for k successes in binomial distribution of n trials with
probability p.

5.2 Simulated Annealing Model

The simulated annealing(SA) model we proposed provides nodes the ability
to escape from their current opinion at some probability while keep stable if
n1i(t)/n0i(t) or n0i(t)/n1i(t) is big enough for a node, as shown in the follow-
ing:
1. If n0i(t) > 4 ∗ n1i(t) then set new opinion to 0, while if n1i(t) > 4 ∗ n0i(t)

then set new opinion to 1.
2. Otherwise set new opinion to 0 with probability of n0i(t)/(n0i(t) + n1i(t))

and set new opinion to 1 with probability of n1i(t)/(n0i(t) + n1i(t)).
With the notations same as the previous section, for Eq. (2), we can have

the following equation:
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(4)

5.3 Sky Model

For each node, the sky model we proposed randomly selects the rule correspond-
ing to the MR model probability of ratio otherwise selecting the rule correspond-
ing to the SA model. In the following sections, we use ratio = 0.5 where the MR
rule and the SA rule has the same probability to be chosen. For the sky model,
dc0/dt is a linear combination of that of the MR and the SA model as the the
following equation, where dgc0/dt is Eq. (2) with Eq. (3) and dsc0/dt is Eq. (2)
with Eq. (4):

dc0
dt

=
dgc0
dt

∗ ratio+
dsc0
dt

∗ (1− ratio) =
1

2
(
dgc0
dt

+
dsc0
dt

) (5)

6 Convergence

Under the assumption that all nodes are correct, we can have a0 = c0 and a1 =
c1. Because the model is symmetric on binary opinion 0 and 1, and c0 + c1 = 1,
it’s sufficient to only track c0 and consider c0 ≥ 0.5.



6.1 Numeric Analysis

According to the mean field equations, dc0/dt(a.k.a. the change speed of c0) and
∫

dc0
dt

dt (a.k.a c0) are demonstrated in Fig. 2a and Fig. 2b respectively.
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Fig. 2. Numeric analysis of the sky model

From Fig. 2a we can see that ∀c0 ∈ (0.5, 1) and ∀D > 0, change speed of
c0 is always positive, i.e.,sky c0 strictly increases with time t. This conclusion
can also be proved mathematically, but it won’t be presented here due to lack
of space in this paper.

From Fig. 2b we can see that network with greater degree D will converge
more quickly. We can also see that with a tiny deviation of c0 from 0.5, even
when D = 5, c0 can still converge to 1 in about 10 rounds.

6.2 Simulations

We simulate the sky model on the wiki dataset for 1000 runs starting with
c0 = c1 = 0.5 , where convergence is defined as cvg = |c0 − c1|/(c0 + c1), note
here the network may also agree at 1 instead of 0. We also comparing the model
to the paradigmatic voter model and the Sznajd model adapted to our framework
as following:
1. Traditional voter model selects a node one time, and chooses the opinion of

a randomly select node among the nodes it interacts. We adapt it to the sky
framework that for each node the opinion of a random selected node from
all of its followees is chosen.

2. Traditional Sznajd model for networks(not the original version for one di-
mension linear chain) selects a pair of randomly selected nodes who interacts
with a random taken third node, if nodes of the pair have the same opinion,
then the third node is also set to have the same opinion otherwise nothing
happens. We adapt it it to the sky framework that for each node if two ran-
domly chosen followees have the same opinion, then the node set its opinion
to that opinion otherwise nothing happens.
The convergence and rounds to converge for all the models on the wiki dataset

are show in Fig. 3 , and for the sky model on all the datasets are show in Fig. 4 .
Note round 41 means the network failed to reach consensus within 40
rounds in that run, and also each bin of the histogram is 2.
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Fig. 3. Simulation of all the models on the wiki dataset
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Fig. 4. Simulation of the sky model on different datasets

From Fig. 3b , we can see that for the sky model, probability of rounds needed
to reach consensus decrease asymptotically when greater than 10. In contract,
some of runs of the MR model can never reach consensus, and simulation shows
the network may stuck in a stable state where both the nodes with opinion of 0
and 1 exist, but they never change in later rounds. Majority of the runs of the SA
model will not reach consensus in 40 rounds, simulations shows that the network
may vastly change in each round without steady change direction of convergence,
and escape in a tiny probability from the state to the track with convergence
steadily increased in each round. Fig. 3a also shows those observations from the
perspective of convergence. The voter model has the worst performance so it
need no more discussion. For the Sznajd model, its convergence speed is worse
than MR and sky models but it has smaller ratio of runs which can’t converge
within 40 rounds than the MRmodel. Comparing to sky model, both convergence
speed and rounds to converge of the Sznajd model is worse than the sky model.
To conclude, the sky model we proposed has the best performance on the wiki
dataset than existing paradigmatic models including MR, vote and Sznajd.

From Fig. 4a , we can see that for the sky model on each dataset, simula-
tion result of the sky model approximately fits theoretical analysis. Rounds to
converge grows with nodes count(denoted as N), and approaches more closely
to theoretical result when N is larger, that’s because mean field equation works
best when N → ∞, thus ∀N the theoretical result is in fact the theoretical lower
bound.

From Fig. 4b , we can see that for the sky model, all the runs on all datasets
can reach consensus within 40 rounds. Most of the runs can reach consensus
quickly in about 10 rounds. However, average rounds to reach consensus are
slightly greater than that of the MR model.

Note that even starts with densities of 0 and 1 to be same and both of them
is 0.5, agreement still emerges from the network while in mean field equations



dc0/dt = 0 when dc0 = 0.5, that’s because the state in dc0 = 0.5 is unstable and
any nonuniform distribution of nodes with opinion 0 or 1 or fluctuation provided
by randomization may drive the network away from the unstable state.

7 Fault Tolerance

7.1 Sybil Attack

Sybil attack resistance analysis is straightforward. See Fig. 5, where node marked
by A is the current node deciding its new opinion, and A decide its opinions
according to opinions broadcasted by its followees including correct nodes C
and faulty nodes F while nodes S are Sybil nodes. Because of the difficulty for S
to make A trust S which is actually controlled by A rather than S, there are
no directed links from S to A, so Sybil nodes take no effect when A is deciding
its new opinion. Collusion among F and S does not help the attack, because the
contribution to the decision of A is still the same with F without S.
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Fig. 5. Sybil Attack
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To compromise the network, creating new Sybil nodes or relationships be-
tween them are useless, instead, the adversary should attract more correct nodes
to follow the nodes controlled by him. Experiments presented in later sections
even show that for the same number of trust relationships from correct nodes to
faulty nodes, the smaller the faulty nodes number is, the stronger the attack is.

7.2 Lower Bound

Because the model is symmetric on binary opinion 0 and 1, it’s sufficient to
only track the case that c0 ≥ c1.

According to our definition of almost-everywhere consensus, a successful con-
sensus process should fulfill the following requirements:
1. If c0 is far greater than c1(e.g., c0 ≥ 2c1), then at least (1− ǫ) proportion of

correct nodes should agree at 0.
2. Else at least (1 − ǫ) proportion of correct nodes should agree at the same

opinion which is either 0 or 1.
Under Byzantine failures, a faulty node can behave arbitrarily or even collude

with other nodes. Different behavior of faulty nodes contributes differently to
the evolution of c0 in the mean field equations. Here are some scenarios:



1. All faulty nodes left the network at t− dt, then at t we have a0 = c0/(1− f)
and a1 = c1/(1− f).

2. This scenario is not about failure, but about the dynamic characteristic of
P2P network. Same number of correct nodes with opinion 0 joins the network
at t−dt, then at then at t we have new c0 denoted as c′0 with c′0 = 2c0/(1+c0)
together with the corresponding c′1 = c1/(1 + c0), a

′

0 = 2c0/(1 + c0) and
a′1 = c1/(1 + c0).

3. All faulty nodes always broadcast 1 at t− dt, then at t we have a0 = c0 and
a1 = c1 + f .

4. All faulty nodes broadcast 1 to half of their followees and 0 to the other half
at t− dt, then at t we have a0 = c0 + f/2 and a1 = c1 + f/2

5. Faulty nodes broadcast opinion randomly chosen from 0 and 1 at t−dt, then
at t we also have a0 = c0 + f/2 and a1 = c1 + f/2

6. Faulty nodes broadcast 1 when they should broadcast 0 and vise versa at
t− dt, then at t we have a0 = c0 + f ′

0 and a1 = c1 + f ′

1, where f
′

0 and f ′

1 can
be calculated according to the mean field equations similar to Eq. (2).

Note that the first two examples show how the agreement evolves in dy-
namic network, also topology or global view of the network are not involved in
our model, and consensus emerges from local interactions of each node with its
direct contacts. Failures can’t be enumerated exhaustively and they can mix in
a network, but since max( c0+f0

1−fs
) = max( c0+f0

c0+c1+f0+f1
) = c0+ f when f0 = f and

f1 = fs = 0, and min c0+f0
1−fs

= c0 when f0 = fs = 0 and f1 = f , the following
constraint always stands:

{

a0 ∈ [c0, c0 + f ]

a0 + a1 = 1
(6)

Lemma 1 (If the network can tolerant any failures committed by given
faulty nodes, it must agree at 0).

For a network with c0, c1 and f given at time t to be c0(t), c1(t) and f(t), if
it can tolerant any failures committed by faulty nodes, then it must agree at 0.

Proof. For the case that c0(t) that is far greater than c1(t), it stands according
to the almost-everywhere consensus requirements stated above. For the else case,
if some failures can stop it to agree at 0, then according to the requirements it
must agree at 1, s.t. ∃ time t′ > t and c0(t

′) ≤ ε(1−f). Because of the continuity
of c0 on t, must ∃t′′, s.t t′ > t′′ > t, c′′0 ∈ [c0(t

′), c0(t)], c0(t
′′) = c1(t) < c0(t) and

c1(t
′′) = 1− f − c0(t

′′) = c0(t
′′). But according to the symmetric property of the

model, the failures must also be able to stop it to agree at 1 from time t′′, thus
leads to contradiction.

Lemma 2 (For given f , greater c0 tolerant failures equally or better).

For a network with given f , if at two times t′ and t′′(no relationship between
t′ and t′′ assumed), s.t c0(t

′) < c0(t
′′), and for t > t′, network can tolerant any

failures, then it can also tolerant any failures for t > t′′.



Proof. If for t > t′ and the network can tolerant any failures, then according to
Lemma 1, it must agree at 0. We then discuss in two cases. For c0(t

′′) ≤ ε(1−f),
because of the continuity of c0 on t, ∃t′′′ s.t. c0(t

′′′) = c0(t
′′) ∈ [c0(t

′), ε(1 − f)]
and c1(t

′′′) = 1−f− c0(t
′′′) = c1(t

′′) , thus the network can tolerant any failures
for t > t′′′, we can then conclude the network can also tolerant any failures for
t > t′′. For c0(t

′′) > ε(1− f), if it can’t reach consensus successfully, then must
∃t′′′ > t′′ s.t c0(t

′′′) ∈ [c0(t
′), ε(1− f)], but it’s already known that for t > t′ s.t

c0(t) ∈ [c0(t
′), ε(1− f)] it can tolerant any failures, thus leads to contradiction.

Lemma 3 (If tolerant smaller a0, then tolerant greater a0).

For a network with given f , c0 and c1, if at two times t′ and t′′(no relationship
between t′ and t′′ assumed), s.t a0(t

′) < a0(t
′′), and for t > t′, network can

tolerant any failures, then it can also tolerant any failures for t > t′′.

Proof. From Eq. (5) we can see that given other parameters, dc0/dt strictly
increases with a0(note that a1 = 1−a0), then c0(t

′+dt) < c0(t
′′+dt). According

to Lemma 2, it can also tolerant any failures for t > t′′.

Theorem 1 (Lower bound of fault tolerance).

For any network with known faulty nodes and initial states of correct nodes,
thus c0, c1 and f are given, if the network can tolerant the failure that all the
faulty nodes always output 1, it can tolerant any other failures.

Proof. According to Lemma 3, and Eq. (6), if a network can tolerant failure with
a0 = c0 together with a1 = c1 + f , then it can tolerant any other failures. And
a0 = c0 together with a1 = c1 + f is exactly the case all the faulty nodes always
output 1, thus the theorem stands.

7.3 Fault Tolerance Performance

Because of the constraint that c0 + c1 + f = 1, it’s not convenience to study the
performance threshold of fault tolerance on C0 directly. However, we can trans-
lated the threshold question to a new one: if at time t a network with c0 = p has
no faulty nodes, then uniformly choose f proportion of all the nodes(including
opinion with 0 and 1) to be faulty, what’s the max value of f the network can
tolerant?

fcritical is the critical point for p if fcritical fulfill the following two require-
ments:

1. ∀f < fcritical, when t → ∞ and under any failures, c0/(1− f) ≥ 1− ε.
2. ∄f ′ such that f ′ fulfill the previous requirement while f ′ > fcritical.

Following the definition of critical point, according to Theorem1 for ε = 0.05,
by iterating on the mean field equation, critical points can be plotted in Fig. 6,
where solid lines are critical points. There are also dotted lines where at each
point dc0/dt = 0. From the figure we can see that ∀D ∈ [10, 400], as long as
p ≥ 0.75, the network can tolerant any failure with f ≤ 0.13.



8 Experiment

According to existing studies, latency between peers in DHT is mostly between
50 to 1000 ms [57, 58]. In our experiment, we employ a simply latency model
that the time for each message to be delievered conforms gauss distribution of
(µ = 500, σ = 500) with lower cutoff of 50 and no upper cutoff which means a
message may never be lost in a small probability even if the node broadcasts it
is correct, we also set timeout = 2000 for the failure detector.

Since for a network with c0 far greater than c1(e.g., c0 ≥ 2c1), reaching
consensus at 0 is successful, but that at 1 is failed, we define signed convergence
as the Eq. (7), thus only if a network survive from failures, signed convergence
will equal to convergence defined earlier.

cvg = (c0 − c1)/(c0 + c1) (7)

To measure final decision of correct nodes, we also define decision as the
following equation:

decision = |d0 − d1|/(d0 + d1) (8)

where d0 and d1 is the count of correct nodes which have final decision on opinion
0 and 1 respectively.

We experiment on network started with cvg = 0.5 and f = 13% while faulty
nodes always output 1, then in all decided correct nodes(agree at 0 or 1), for
all dataset correct deciding(agree at 0) is about 96%, and uniform datasets have
almost the same performance regardless their network scale, as shown in Fig. 7a.

But for the wiki datasets, we also concern the tolerance of failures by collusion
of top n% influential nodes, defined as the first n% nodes by sorting all nodes
in descendant order on the count of a node’s followees. Simulation shows that
for the target ε < 5%, the algorithm can tolerant failures by 2% top nodes on
the wiki dataset, as shown in Fig. 7b, where the red dotted lines are the case of
failed to reach the goal under failures commited by 3% top nodes. In all decided
correct nodes(agree at 0 or 1), correct deciding(agree at 0) is about 96.8%.
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Fig. 7. Convergence under failures

Comparing failures committed by random nodes and top influential nodes, we
also find that more centralized trust relationships leads to more power-
ful ability to compromise the network even when the total numbers of trust
relationships participated in the collusion are the same, and in theory analysis
we have already known that the effect of a specific failure depends on the density
of trust relationships for correct nodes to faulty nodes. For the wiki dataset, the



total trust relationships is 33256, and for 13% random nodes, the trust rela-
tionships involved is about 4323, while for top 3% nodes, the trust relationships
involved is only 2155, in contrast that the network can survive in the former
but no in the later. Even excluding the factor that lots of trust relationships are
among the faulty nodes which has no effect for correct nodes in the 13% random
node case, the result also supports the finding.

9 Discussion and Limitations

Detect and Unfollow If a node is faulty and identified timely, then correct
nodes can unfollow it thus it has no impact in later consensus processes. A simple
strategy is similar to the failure detector that if a followee has a final decision
different to the majority of other followees, it’s moved from followee list to a
suspect list until it behaves good again. Trust relationships can’t be abused many
times, and that’s also a big advantage over computing power based solutions.

Suppress Top Influential Nodes Top influential nodes generally are most
trustworthy nodes, so the chance of collusion between a number of them are much
smaller than ordinary nodes with same number. However, to decrease monopoly,
a node might unfollow one of its followees if the followees already has too many
followers, or assign a weight w with w < 1 for that followee.

Distributed Oracles Because in almost-everywhere consensus, there might
still be tiny proportion of correct nodes deciding on the wrong opinion even the
consensus is considered to be successful. Distributed oracles can be employed
to help those node to ensure safety. An oracle behaves exactly the same with
a regular correct node, except it does not broadcast messages during consensus
process, and it only broadcast its final decision for each consensus process. Thus
an oracle is actually a sink in the directed graph of trust relationships, and
has no impact on the consensus process. An oracle must follow many
carefully selected nodes in a variety of communities to avoid deciding on the
wrong opinion, and it should also publish its followees for public audit. In this
way, an oracle acts as a non-intrusive sample of the whole network. Thus a node
can subscribe some oracles and compare its own decision against them to ensure
safety.

Community Strength Although our approach can successfully runs over
the wiki dataset, it also shows the consensus speed degrades comparing to the
uniform dataset, as existing studies show that community strength impacts
the performance [45–48]. The relationships between our model and community
strength need to be studied further.

Fault Tolerance Performance Although our approach can tolerant fail-
ures committed by at least 13% nodes when convergence defined in Eq. (7) ≥
50%, otherwise the fault tolerance performance will degenerate as we can see
from Fig. 6. However, on the basis of this work, we already developed a con-
sensus mechanism for hash values which can tolerant failures well even when
convergence ≤ 50% under the premise that hash collision is impossible in reality
when hash size is big enough.



10 Conclusion

The sky framework we proposed is Sybil-proof and also applicable in dynamic
network. The sky model has better performance of convergence than existing
models in literatures, and its lower bound of fault tolerance performance is also
analyzed and proved. Comparing to compute power based consensus, our ap-
proach enables disarming faulty or potentially malicious nodes by unfollowing
them. To the best of our knowledge, it’s the first work to bring opinion dynamics
to P2P network for consensus.
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