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Abstract—Traditional Byzantine consensus does not work in
P2P network due to Sybil attack while the most prevalent
Sybil-proof consensus at present still can’t resist adversary with
dominant compute power. This paper proposed a two-layered
opinion dynamics model named SkyHash for hash consensus
over P2P network. For hash consensus, failures are constrained
due to the difficulty to create collision with big hash size,
however, we identified DoS attack and extent our model to a
DoS-proof one. Simulations show that on the SNAP dataset
of the Wikipedia who-votes-on-whom network with reasonable
latencies, the network will reach consensus within 45 seconds, and
it can also tolerant DoS attack committed by 7% random nodes
or 0.9% top influential nodes, where no correct nodes decide
on different hashes and 4% nodes refuse to decide, at the cost
of 50% reduction of throughput. Comparing to compute power
based consensus, our approach can resist any faulty or malicious
nodes by unfollowing them. To the best of our knowledge, it’sthe
first work dedicated to hash consensus on P2P network based on
opinion dynamics.

I. I NTRODUCTION

P2P network is well known on its decentralized nature
that increases robustness because it removes single pointsof
failure. Emerging cryptocurrencies(e.g., Bitcoin) demonstrate
the demand of consensus over P2P network with decentraliza-
tion still retained [1]. However, to keep decentralization, no
logically central and trusted authority vouches for a one-to-
one correspondence between entity and identity, thus makes
it difficult to resist Sybil attack, wherein a adversary cre-
ates a large number of pseudonymous identities to gain a
disproportionately large influence [2]. Traditional Byzantine
consensus algorithms that tolerate only a fixed fraction faulty
nodes are not useful in P2P network with the presence of Sybil
attack [3]. Existing consensus based on compute power can be
Sybil-proof but can’t resist adversary with dominant compute
power [4].

Opinion dynamics is a field where mathematical-and-
physical models and computational tools are utilized to explore
the dynamical processes of the diffusion and evolution of opin-
ions in human population if each body only only takes local
interactions with its contacts [5]. In our previous work, we
proposed theskyframework to apply opinion dynamics in P2P
network for consensus, as well as theskymodel to maximize
performance for binary consensus [6]. However in the scenario
of cryptocurrency, each node packs new transactions it receives
from the time of last consensus into a block, the whole network
need to determine which one of those blocks to agree at, thus

the problem is actually consensus on a dynamic set which
might be different for each node, and there is no direct way to
convert the consensus problem to binary one without breaking
decentralization.

In this paper, we proposedSkyHash, an opinion dynamics
model for hash consensus under theskyframework. The model
consists of a bit layer and a hash layer, and the bit layer is
actually thesky model applied in each bit position of hashes
and result in a pseudo hash, while the hash layer choose from
hashes so that the selected hash has the minimal Hamming
distance to the pseudo hash. For hash consensus, failures are
constrained due to the difficulty to create collision with big
hash size such as 256b, however, we identified DoS attack and
extent our model to a DoS-proof one. Simulations show that
on the SNAP dataset of the Wikipedia who-votes-on-whom
network[6] with reasonable latencies, the network will reach
consensus within 45 seconds, and it can also tolerant DoS
attack committed by 7% random nodes or 0.9% top influential
nodes, where no correct nodes decide on different hashes and
4% nodes refuse to decide, at the cost of 50% reduction of
throughput. Comparing to compute power based consensus,
our approach can resist any faulty or malicious nodes by
unfollowing them. To the best of our knowledge, it’s the first
work dedicated to hash consensus on P2P network based on
opinion dynamics.

II. RELATED WORK

Sybil Attack ResistanceOne approach to resisting Sybil
attack is relying on a certifying authority to perform admis-
sion control, which will break decentralization [7]. Another
approach is remotely issuing anonymous certification of iden-
tity by identifying distinct property of a node, e.g, utilizing
geometric techniques to establish location information, but
it’s unreliable in a network with changing environment [8].
Puzzle computing is also introduced to increase the cost of
Sybil attack, such puzzles involve posing a challenge that
requires a large amount of computation to solve but is easy
to verify [9], however, there’s no way to resist Sybil attack
if the adversary has dominant computing resources. Sybil
prevention techniques based on the connectivity characteristics
of social graphs is another direction, because of the difficulty
to engineer social connections between attack nodes and
honest nodes, this approach is considered to be more robust
over other ones [10].

http://arxiv.org/abs/1507.03927v3


Name Wiki

Nodes Counts 998
Average Degree 33.33
Diameter 5
Average Path Length 2.34
Density 0.033
Average Clustering Coefficient 0.183
Eigenvector Centrality Sum Change 0.029

Table I
DATASETS PARAMETERS

Cryptocurrency Bitcoin provides Sybil-proof consensus
mechanism through an ongoing chain of hash-based proof-of-
work(PoW) [1], which is actually a puzzle computing based
approach. However, one has dominant compute power can
control the network while the rest of the network has no means
to resist it, and the proliferation of ASIC miner and mining
pools already leads to the monopoly of compute power [11],
[4]. Ripple/Stellar [12] also use a relationship based solution
to resist Sybil attack similar to ours, however, their algorithm
has a major defect that it relies on the assumption that for a
node, if 80% of its followees agree on a opinion, then 80% of
all nodes agrees on the same opinion, but the assumption only
stands when a node follows an overwhelming majority of all
nodes. As reported, Ripple/Stellar and other existing solutions
like PoS have problem even bigger than PoW [13], [14].

III. T HE PROBLEM AND DATASETS FOREVALUATION

In traditional definition of consensus, each node has a
initial value, the consensus problem is to decide upon a
common value among all nodes. A node iscorrect if it
behaves honestly and without error. Conversely, a node is
faulty. In a P2P network, an adversary can always isolate
some number of correct nodes in eclipse attack [15], hence
almost-everywhere consensusis the best one can hope for in
such networks [16]. Similar to existing definition [17],almost-
everywhere consensusis defined that up toεn correct nodes
in a P2P network does not agree at the common value as
the majority of the nodes, wheren is the network size, and
ε > 0 is sufficiently small. We use the termopinionandvalue
interchangeably in later sections following the convention of
opinion dynamics.

We evaluate our approach on the SNAP dataset of Wikipedia
who-votes-on-whom [18] called as thewiki dataset in later
sections, because it presents trust relationships in the form of
votes for administration. We also impose a constraint which
can be enforced in P2P client of each correct node that
indegree >= 10, thus all nodes with followees less than
10 are removed. Parameters of the result network is shown
in Table I, and the cumulative distributions of indegrees and
outdegrees are shown in Fig. 1.

To facilitate comparing the impact of network size, we
also run simulations upon several uniform networks with size
of 100, 1000, 5000 and 20000 nodes, where each node has
the same degree and connect to each other randomly. Those
dataset are named asuniform-l00, uniform–1k, uniform–5kand
uniform–20krespectively.
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Fig. 1. Degree distribution of the wiki dataset

IV. OVERVIEW OF THE SKY FRAMEWORK

The sky framework is designed to apply opinion dynamics
for consensus over P2P network, and its detail is presented
in [6]. Each node in the P2P network is owned by somebody
and identified by a public key. When the owner of nodeA
trusts the owner of nodeB, owner ofA can setA to follow
B in the P2P client, andB is called asfolloweewhile A is
called asfollower. The network can be abstracted to a directed
graph where each peer is a node, and each trust relationship
is a directed edge. To ensure connectivity and safety, each
correct node is constrained by the P2P client to have at least
a minimum number of followees.

Nodes are equally privileged and equipotent participants
in the consensus process in any time as ordinary opinion
dynamics. However, we introduced the concept ofround into
the consensus process which is commonly used in existing
Byzantine consensus but not in opinion dynamics. Starting
from a initial state as the first round, each correct node
separately determines when to finish its current round and
decides its new value following a common rule according to its
current value and the values of its followees, and then enters
the next round. The common rule is actually the algorithm
from the aspect of programming, but to follow the convention
of opinion dynamics, we use the termmodelin this paper.

A followee unidirectional broadcasts signed messages to all
its followers. We allow a faulty node’s signature to be forged
by an adversary, thereby permitting collusion among the faulty
nodes. Broadcast is implemented by DHT and asymmetric
cryptography. For a node as followee, all its followers and
itself form a sharing group(known as a “swarm”) identified by
the followee’s public key. Each broadcasted message is signed
with the private key of the followee, and the follwers can check
the identity and integrity against the followee’s public key.

Note here to avoid centralization no global clock or coordi-
nator is used, each node decides how and when to enter next
round separately, thus each node may enter the same round
in different time. To deal with the problem in asynchronous
system pointed by FLP impossibility [19], the framework
use amessage filteras well as afailure detectorwhich can
make mistakes by erroneously adding nodes to its list of
suspects [20]. A node makes its final decision when enough
rounds(e.g.,40) passed, and a node may refuse to agree at a
hash finally when no hash from its followees is overwhelming.
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Fig. 2. Layers of the SkyHash model

V. THE SKY HASH OPINION DYNAMIC MODEL

At time t, a node receives all the messages broadcasted by
its followees att − dt, then finishes processing the received
messages and broadcast its new opinion att. By designating
the opinion ofnodei at time t to beHi(t), the model can be
expressed as a functionF :

Hi(t+ dt) = F(Hi(t), Vi(t)) (1)

whereVi(t) = [Hf1(t), Hf2(t), . . . Hfn(t)] and f1, f2, . . . jn
are followees ofnodei. We also denoteHi = bi,1bi,2 · · · bi,k,
wherebi,j ∈ {0, 1} for j ∈ [1, k] is the value of bit at position
j in Hi, andk is the hash size. In the following we also denote
V = {Hi(t), Vi(t)}.

The SkyHash model consists of a bit layer and a hash layer
shown in Fig. 2, the bit layer computer apseudo hashP by
applying theskymodel(proposed in [6]) for each bit position
separately, and the hash layer choose a hashnewH from V
such thatnewH has the minimal Hamming distance toP .

Bit Layer For each node at timet, for each bit position
j, we denoten0j(t) andn1j(t) to be the count of0 and 1
in position of each hash inV respectively. The bit layersky
model randomly selects one from the following two items:

1) If n0i(t) > n1i(t), then set new opinion to 0, and vise
versa, while ifn0i(t) = n1i(t), then select from{0, 1}
randomly.

2) If n0i(t) > 4∗n1i(t) then set new opinion to 0, while if
n1i(t) > 4∗n0i(t) then set new opinion to 1. Otherwise
set new opinion to 0 with probability ofn0i(t)/(n0i(t)+
n1i(t)) and set new opinion to 1 with probability of
n1i(t)/(n0i(t) + n1i(t)).

Hash layer Hash layer sub algorithm can be expressed as
a functionFh to choosenewH from V for each round by
newH = Fh(P, V ), whereP is the pseudo hash computed
from bit layer model. It choosenewH ∈ V , such that
∀Hi ∈ V, i ∈ [1, n], and Hi 6= newH , dist(newH,P ) ≤
dist(Hi, P ), wheredist is the function to calculate the Ham-
ming distance between two hashes.

VI. CONVERGENCEANALYSIS

A. Mean Field Analysis

Due to the difficulty to directly analyze the stochastic
process of the interactions between every nodes described in
Eq. (1), we analyze our opinion dynamics model usingmean
field theory(MFT), which studies the behavior of large and
complex stochastic models by studying a simpler model. Such
models consider a large number of small individual compo-
nents which interact with each other. The effect of all the
other individuals on any given individual is approximated by
a single averaged effect, thus reducing a many-body problem
to a one-body problem [21]. MFT is widely used in opinion
dynamics as an effective modeling method [5]. By MFT, the
opinion dynamics model can be expressed by a continuous
differential equation, and theround can be regarded asdt = 1
in the corresponding equation shown in Eq. (2).

1) Bit Layer: Since the bit layersky model is already
analyzed in detail in [6], only the final mean field equation
is introduced in this paper. We denote the densities of bitj
in correct nodes to bec = c0j + c1j wherec0j and c1j are
the densities of correct nodes with opinion of0 and 1, and
densities of faulty nodes to bef = f0j + f1j + fsj where
f0j and f1j are the density of faulty nodes with opinion
of 0 and 1 and fsj are the density of faulty nodes without
opinions broadcasted. So we havec+ f = 1. We also denote
densities of all nodes(including correct and faulty nodes)with
opinion0 and1 to bea0j anda1j respectively, thus we have
a0j = (c0j+f0j)/(1−fsj) anda1j = (c1j+f1j)/(1−fsj).

By designating the derivative ofc0j on t to be dc0j/dt
which is actually the change speed ofc0j, we can have Eq. (2)
wheres1j is the probability that a node flips from opinion1
to opinion0, ands0j is the contrary.

dc0j
dt

= −
dc1j
dt

= s1jc1j − s0jc0j (2)

We specify the mean indegree and outdegree of a node to
be D, F (k;n, p) is the cumulative distribution functionand
d(k;n, p) is the probability mass functionfor k successes in
binomial distribution ofn trials with probabilityp, then Eq. (2)
can be written as following:

dc0j
dt

=
sm1j + ss1j

2
c1j +

sm0j + ss0j
2

c0j (3)

Wheresm1j , sm0j can be calculated from Eq. (4), andsm1j,
sm0j can be calculated from Eq. (5).
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)

(5)
2) Hash Layer:To analysis the hash layer model, we start

from answering this question: for hash length ofk, density of
each bit with value0 in pseudo hash ispp, and density of each
bit with value0 in D candidate hashes isph, then what’s the
final density(denoted aspf ) of each bit with value0 in the
selected hash when we select the hash from the candidates
with the minimal Hamming distance to the pseudo hash?

Due to capacity of this paper, the result is given directly by
the following equation without intermediate reasoning:

pf (D, k, ph, pp) =

k
∑

l=0

k
∑

m=0

k
∑

n=0

prob(l,m, n), n ≤ l, n ≤ m

(6)
where:

prob(l,m, n) =
l +m− 2n

k

·

D
∑

u=0

peqp
j
gt(peq + pgt)

D−u−1d(m; k, pp)
1−D

(7)
Here d(m; k, pp) is the possibility mass function described
above, and















peq = pdists[l,m, n]

pgt =

k
∑

x=l

k
∑

y=0

pdists[x,m, y]
(8)

andpdists[l,m, n] is calculated by the following equation:

pdists[l,m, n] = (

(

k

n

) k
∑

y=0

(pp(1− ph))
y)

· (

(

k − n

m− n

) k
∑

y=0

(ppph)
m−n)

· (

(

k −m

l − n

) k
∑

y=0

((1− pp)ph)
l−n)

· ((1 − pp)(1− ph))
k−m−(l−n)

(9)

Then considering the bit layer and hash layer models as a
whole, we can have the following equation:

dc0

dt
= pf (D, k, c0, (c0 + dc0j)− c0 (10)

wherepf is described in Eq. (6), anddc0j/dt is described in
Eq. (3).

However, Eq. (10) is inaccurate because it models the case
that bit in one position is uncorrelated with bit in any other
positions for a hash in mean field. But in fact the correlation

between different bits of a hash increases along with the
increasing of convergence.

3) Numeric Analysis:To analysis the convergence, we only
consider the case where all nodes are correct while the case
with faulty nodes are analyzed later. Thus we can havea0 =
c0 and a1 = c1. Because the model is symmetric on binary
opinion0 and1, andc0+c1 = 1, it’s sufficient to only trackc0
and considerc0 ≥ 0.5. According to the mean field equations,
dc0/dt(a.k.a. the change speed ofc0) and

∫

dc0
dt

dt (a.k.ac0)
are demonstrated in Fig. 3a and Fig. 3b respectively forD ∈
{8, 16, 32, 64, 128, 256}. From Fig. 3a we can see that∀c0 ∈
(0.5, 1) and∀D > 0, change speed ofc0 is always positive,
i.e., c0 strictly increases with timet. From Fig. 3b we can
see that network with greater degreeD will converge more
quickly. We can also see that with a tiny deviation ofc0 from
0.5, even whenD = 16, c0 can still converge to1 within 40
rounds.

B. Simulations

To study the convergence performance, we simulate the
model on the uniform–1k dataset with several hash sizes as
shown in Fig. 4a, as well as on all the datasets with hash size
of 256b as shown in Fig. 4b. The vertical axis is thedensity
of the top hashwhich is the hash with the most number of
nodes agrees at the time. Fig. 4a shows that greater hash size
leads to quicker convergence. Fig. 4b demonstrates that forall
the uniform dataset, rounds to converge increases with node
count and approaches to the theoretical result, that’s because
mean field equation works best whenN → ∞.

The impact of correlations between different bit positions
on the uniform–1k dataset are shown in Fig. 4c which shows
the case that initially all the nodes randomly choose from
2, 16, 128 and 1024 hashes respectively. In all this cases,
densities of each bit position with value 0 and 1 are both
0.5, but the correlations between different bit positions are
different. Fig. 4c shows that round needed to reach consensus
decreased with greater correlations. Follow this observation,
we can assume that in an accurate theoretical result, round
needed to reach consensus should be smaller than the one
shown in Fig. 4b.

VII. FAULT TOLERANCE

Sybil attack of theskyframework is already analyzed in our
previous work [6], thus in this paper we focus on non-Sybil
failures. Under Byzantine failures, a faulty node can behave
arbitrarily, it may not run according to the opinion dynamic
model, immune to the hashes broadcasted by its followees and
even colludes with other nodes.

It’s impractical to analyze against all possible failures,
however,time related failures such as stop failure or delay
is already handled by the sky framework based on failure
detector, we only analyzevalue related failures here. For big
hash size such as 256b, it’s impossible at present to elaborate
data so that its hash is same as a given value(aka. hash
collision), thus a faulty node can’t broadcast arbitrary hashes
as its will, and its ability to compromise the network is also
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Fig. 4. Simulation of the SkyHash model without faulty nodes

constrained. Experiments(not presented in this paper) shows
that faulty nodes broadcasting random hashes in each round
has little impact, similar to our previous research in binary
consensus [6]. However, also similar to the result of the pre-
vious research that faulty nodes might mislead the consensus
by colluding to keep broadcasting one value(e.g. 0) in binary
consensus, denial of service attack might be committed as we
introduced in the following. Another potential attack vector
is producing partial hash collision, i.e., elaborate data so that
part of the hash is exactly what an adversary wants even it
can’t elaborate the whole hash, but we have not find a way
to exploit it yet, especially considering theDoS-proof model
introduced below.

A. Denial of Service

Each hash represents a block with a number of transactions
packed in it, though the transactions are ensured to be validor
the hash will be refused by correct nodes, a group of malicious
nodes can still selectively choose which transactions to be
packed and if the group can have the network always agree
at hashes from itself, in this case valid transactions may not
be served forever, and those type of attack is called denial of
service(DoS) attack.

Experiment not presented also shows that when each correct

node proposes a hash generated by itself, even 0.5% malicious
nodes colluding together to always broadcast the same hash
can make the network agree at the hash they proposed, thus
successfully commit DoS attack.

A naive idea on dealing with DoS attack is to make each
correct node refuse any hash whose corresponding data does
not include unserved transactions it seen. but it’s unreliable
because each node may receive an individual transaction in
different time. However, our previous research shows that
lower bound of the faulty tolerance performance for binary
consensus shows that for the density of correct value for a
bit is near 0.5, the fault tolerance performance is poor, and
the performance increases with the density [6]. Based on the
observation, we proposed the idea to resist DoS attack by
leveraging the strength from the adversary itself to cultivate
competitive rivals in correct nodes, and more powerful adver-
sary leads to more powerful rivals, thus increase the density
of non-DoS hash.

DoS-proof model For each correct node, it consists of
two phases, areverse phase and anormal phase. Given
round thresholdR, a node is in thereverse phase when
r <= R, the hash layer of reach node’s round chooses
newH ∈ V , such that∀Hi ∈ V, i ∈ [1, n], andHi 6= newHi,
dist(newH,P ) ≥ dist(Hi, P ), while whenr <= R, a node



behaves exactly the same as the case without DoS-proof.
Simulation on the uniform–1k dataset with DoS attack from

11%, 15% and 20% nodes is shown in Fig. 5 with round
thresholdR = 15 in the DoS-proof model. Green lines are the
cases that the network succeeds to resist the DoS attack, where
all correct nodes agrees at a hash which is not the hash(called
as DoS hash) proposed by DoS attack nodes. Red lines are
the cases that the network fails to resist the DoS attack, where
all correct nodes agrees at the DoS hash. Solid lines are the
density of the hash proposed by the DoS attack nodes, and
dashed lines are the density of the top hash(may be DoS hash
or non-DoS hash) defined before.

The network will survive in DoS attack by less than 15%
nodes, where all nodes still agrees on the same valid hash in
each run, but 50% of the runs will agrees on the hash proposed
by the DoS attack nodes, thus the throughput will decrease
to 50% of the case without DoS attack. Fig. 5a and Fig. 5b
demonstrate the oscillation of the density of DoS hash, and
the heavier the attack, the smaller range the oscillation, until
the oscillation is unobvious thus in all runs the network will
always agree on the DoS hash as in Fig. 5c.

VIII. E XPERIMENT

Since to the best of our knowledge, this paper is the the
first work to bring opinion dynamics to P2P network for
hash consensus, there is no previous work to compare by
experiments, this paper only presents the experiment of our
SkyHashmodel.

According to existing studies, latency between peers in DHT
is mostly between50 to 1000 ms [22]. In our experiment, we
employ a simply latency model that the time for each message
to be delivered conforms gauss distribution of (µ = 500, σ =
500) with lower cutoff of 50 and no upper cutoff which means
a message may never be lost in a small probability even if the
node broadcasts it is correct, we also settimeout = 2000
for the failure detector and round thresholdR = 15 in the
DoS-proof model.

Fig. 6 exhibits the experiment results on the wiki dataset.
Green lines are the cases that the network succeeds to resistthe
DoS attack, where all correct nodes agrees at a hash which is
not the hash proposed by DoS attack nodes. Red lines are the
cases that the network fails to resist the DoS attack, where all
correct nodes agrees at the hash(called as DoS hash) proposed
by DoS attack nodes. The vertical axis is the density of the
top hash which is the hash with the most number of nodes
agrees at the time.

Under theSkyHashmodel the wiki dataset can survive under
DoS attack committed by 7% random nodes or 0.9% top
influential nodes defined as the first 0.9% nodes by sorting all
nodes in descendant order on the count of a node’s followees,
however, the throughput will decrease 50% even when the
network survives. In all the cases that the network survives,
correct nodes can always reach almost-everywhere consensus
within 45 seconds without correct nodes agree at different
values, while under DoS attack by 7% random nodes, 1.5%
nodes refuse to agree at any values, and under DoS attack by

Proportion of compute power Success probability

50% 100%
40% 50.398%
30% 13.211%
20% 1.425%
10% 0.024%

Table II
BITCOIN ATTACK SUCCESS PROBABILITY

0.9% top influential nodes, 4% nodes refuse to agree at any
values.

As we introduced in Section II, Bitcoin’s PoW is the
best Sybil-proof consensus at present, but it is a different
mechanism to our work and not comparable directly in Fig. 6.
Through the automatic adjustment of the difficulty of PoW,
Bitcoin generates a block in about 10 minutes, and a fully
confirmed consensus need 6 blocks thus needs about 1 hour.
However if a single node or a group of nodes has a large
proportion of compute power, it can compromise the network
and create a fork. Table II shows the probability of success
attack for 6 blocks confirmations [23]. If one adversary in
Bitcoin has a threatening compute power, the whole network
can’t do anything to resist it because the power is controlled
by the adversary itself, while in our approach a node’s power
is controlled by its followees, thus a node can be unarmed by
unfollowing it.

IX. D ISCUSSION ANDCONCLUSION

The mean field equation to analyze the hash layer model
is still inaccurate, and due to the complexity of the SkyHash
model we did not found a way to theoretically analyze the
threshold of fault tolerance performance as our previous work
on the bit level model. Even we’ve already identified the DoS
attack, there might still be other types of attack not covered.

Although our approach can successfully runs over the wiki
dataset, it also shows the convergence performance degrades
comparing to the uniform dataset, and existing studies show
that community strength impacts the performance [24].

Sybil-proof consensus is still an open problem, and even the
most prevalent Sybil-proof consensus at present still havea big
problem that it can’t resist adversary with dominant compute
power. Opinion dynamics based approach presented in this
paper is a new attempt to circumvent the problems of existing
solutions. Theoretical and experimental result reveals that it
has acceptable performance and the ability to resist any faulty
or malicious nodes by unfollowing them. To the best of our
knowledge, it’s the first work to bring opinion dynamics to
P2P network for hash consensus.
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