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Abstract— It is well known that social networks are composed
of many communities of nodes, where the nodes of the same
community are highly connected, and few links are between the
nodes of different communities. We observe scenarios in both
real-world networks as well as computer networks that opinions
of nodes in the networks can be aware of the existence of com-
munities and take them into account during opinion formation.
Based on the observations, we propose the first community-aware
opinion dynamics model called Sznajd2 by applying the famous
Sznajd model on the inter-community level and intra-community
level. We then briefly introduce coupled fully connected networks
(CFCN), analyze our model theoretically on it, and reveal that
when interconnectivity parameter v > 0.172, nodes in the
networks are surely to reach consensus on opinions along time,
and when v < 0.172 the system might reach consensus or stay
in an asymmetric stable state where some nodes disagree with
others, and the state can be predicted precisely by theoretical
analysis, whose correctness is also verified by simulations. For
consensus performance comparison, we also perform simulations
by applying our model and existing representative community-
unaware models on CFCN. Simulations show that our model
outperforms them, to ensure consensus on CFCN, other models
require v > 0.31 at least, which is nearly two times big than our
model.

I. INTRODUCTION

It is well known that social networks exhibit modular

structure of weakly coupled clusters, i.e., they are composed

of many communities of nodes, where the nodes of the same

community are highly connected, and few links are between

the nodes of different communities [1]. Existing studies

reveal that community structures greatly impact the dynamical

evolution processes of opinions in networks [2], [3], [4],

however, they assume that nodes in the networks are not aware

of the existence of communities thus do not take them into

account during opinion formation.

We observe that in some real world scenarios, the opinion

of an individual may be influenced by each community as a

whole, especially when each community is separated clearly

with ground truth. For instance, in chat groups of WeChat,
a popular mobile social network focusing on acquaintance

relationships among Chinese, for the question “Is our coun-

try better than five years ago? ”, considering the bias of

each community because of its homogeneity, an individual

might consider what his university classmates say, what his

colleagues say, and what his relatives in his hometown say

etc, instead of what this one says and what that one says

directly. Thus even he might has dominant active relationships

in the colleagues community, the way his opinion is formatted

is much different than traditional opinion dynamics models

which demonstrate that opinions from his colleagues will

dominantly influence his own opinion.

We also observe that for consensus in P2P networks or

multi-agent system, because interaction rules are determined

by artificial computer softwares, opinion dynamics model can

be customized for better performance [5], [6], in contrast,

traditional opinion dynamics models are proposed to analyze

social or physics phenomena which are objective rather than

artificial. Existing studies reveal that community structures

greatly decrease the opinion convergence performance, leading

to slow consensus or even prevent consensus [2], [3], [4],

[5]. Community-aware opinion dynamics model provides a

perspective different from traditional models to deal with

community structures.

Based on the observations, we propose a community-aware

opinion dynamics model called Sznajd2 by applying the fa-

mous Sznajd model, which is one of the most influential model

and successfully describes a wide variety of sociophysics

situations in the past decade, on the inter-community level and

intra-community level. We then briefly introduce coupled fully

connected networks (CFCN), which is a topology consisting

of two coupled fully connected networks, thereby mimicking

the existence of communities in social networks. After that

we analyze our model theoretically on CFCN, and reveal that

a transition takes place at a value of the interconnectivity

parameter v ∼ 0.172. Above this value, only symmetric

solutions prevail, where both communities agree with each

other and reach consensus. Below this value, in contrast,

the communities might reach a symmetric state or stay in

an asymmetric stable state where some nodes disagree with

others. Simulations on CFCN demonstrate excellent match

with predictions from theoretical analysis.

To evaluate the performance of our model, we also perform

simulations by applying our model and existing representative

community-unaware models including Sznajd, majority rule
(MR) and voter on CFCN. Simulations show that our model

outperforms them considerably, to ensure consensus on CFCN,

other models require v > 0.31 at least, which is nearly two

times big than our model..

The rest of this paper is organized as follows. Section II

describes the Sznajd2 model. Section III describes coupled

fully connected networks. Section III theoretically analyzes
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determine

(a) Community is biased on α

determine

(b) Community is biased on β

determine

(c) Community is unbiased

Fig. 1. Intra-community rules. Each small circle is a node, and each big circle is a community. Black and white circle are with opinion α and β respectively,
while brick circles are with any opinion, and grey circles are unbiased.

determine

(a) Community is biased on α

determine

(b) Community is biased on opinion β

determine

(c) Community is unbiased

Fig. 2. Inter-community rules for single community. Each small circle is a node, and each big circle is a community. Black and white circle are with opinion
α and β respectively, while brick circles are with any opinion, and grey circles are unbiased.

the model. Section V evaluates the Sznajd2 model by per-

forming various simulations. Finally, we discuss related work

in Section VI and conclude in Section VII.

II. THE Sznajd2 MODEL

The Sznajd2 model proposed in this paper is based on the

Sznajd model, but applied in both intra-community level and

inter-community level. In the traditional Sznajd model for a

general network, each node may has one of the two opinions

α and β. At each step, a node Nk is taken at random and two

nodes Ni and Nj interacts with Nk is also selected randomly.

Denoting the opinion of arbitrary node Nx as sx, if si = sj ,

then set sk = si = sj , otherwise nothing happens. In the

Sznajd2 model, each node belongs to one or more communities

whose memberships are explicitly stated. Each node may has

one of the two opinions α and β.

At each step, do as following first:

1) A node Nk is taken at random.

2) If Nk belongs to exact one community, then the com-

munity is selected.

3) If Nk belongs to two or more communities, then ran-

domly pick two communities.

Then determine the biased opinion of each picked commu-

nity for Nk following rules demonstrated in Fig. 1. For each

community, two nodes Ni and Nj interacts with Nk is also

selected randomly, In the left of this paper, the opinion of

arbitrary node Nx is denoted as sx, then:

1) If si = sj , then the community is determined to be

biased to si = sj as shown in Fig. 1(a) and Fig. 1(b).

2) Otherwise the community is determined to be unbiased
as Fig. 1(c).

If Nk belongs to exact one community, then set the opinion

of Nk by rules demonstrated in Fig. 2:

1) If the community is biased to opinion v ∈ {α, β}, then

set sk = v, as shown in Fig. 2(a) and Fig. 2(b).

2) if the community has unbiased opinion, then sk is

unchanged, as shown in Fig. 2(c).

If two communities C1 and C2 are picked at random for Nk,

then set the opinion of Nk by rules demonstrated in Fig. 3.

Denoting the biased opinion of C1 and C2 to be v1 and vn
respectively, the rules is described as following:

1) If v1 = v2 �= unbiased, then set sk = v1 = v2, as

shown in Fig. 3(a) and Fig. 3(b).

2) If v1 = v2 = unbiased, then sk is unchanged, as shown

in Fig. 3(c).

3) If v1 = unbiased and v2 �= unbiased, then set sk = v2.

Similarly, if v2 = unbiased and v1 �= unbiased, then

set sk = v1. The rule is demonstrated in Fig. 3(d) and

Fig. 3(e)

4) If v1 = α and v2 = β, or v1 = β and v2 = α, then sk
is unchanged, as demonstrated in Fig. 3(f).

III. COUPLED FULLY CONNECTED NETWORK

To analysis the Sznajd2 model accounting for community

structures, and to simply the analysis we only considering the

case that a network consists of exact two communities, we

employ coupled fully connected network (CFCN) which is

a generalized fully connected network, and introduced in [7].

The network consists of two fully connected communities C1

and C2, which are composed of nT
1 and nT

2 nodes respectively.

The connection between C1 and C2 is ensured by interface

nodes set denoted as S0 which belongs to both C1 and C2.

In the following, we denote nodes that belong to only one

community as core nodes. We also denote nodes belong to

two communities as hub nodes. Thus core nodes set is exact
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determine

(a) α and α

determine

(b) β and β

determine

(c) unbiased and unbiased

determine

(d) α and unbiased

determine

(e) β and unbiased

determine

(f) α and β

Fig. 3. Inter-community rules for two communities. Each small circle is a node, and each big circle is a community. Black and white circle are with opinion
α and β respectively, while brick circles are with any opinion, and grey circles are unbiased.

S0, by denoting hub nodes sets for C1 and C2 to be S1 and

S2, we have the following relationships:

S0 = C1

⋂
C2

S1 = C1 \ S0

S2 = C2 \ S0

(1)

We denote numbers of nodes for S1, S2 and S0 as n1, n2

and n0 respectively. By construction, those quantities satisfy:

n0 + n1 = nT
1

n0 + n2 = nT
2

(2)

For the sake of clarity, we focus on equally populated com-

munities where nT
1 = nT

2 = n. We also use parameter v as

a measure of the interconnectivity between the communities,

where n0 = vn. Thus we has the following additional

relationships:

n1 = n2 = (1− v)n

nT = 2(1− v)n+ vn = (2− v)n
(3)

Some typical realization of CFCN can be viewed in Fig. 4,

which demonstrates that greater v means tighter coupled

communities. There are two limiting cases listed as following:

1) When v = 0, the two communities are completely

disconnected, as shown in Fig. 4(a). In this case, all

the nodes are core nodes, and there are no hub nodes.

2) When v = 1, each node in C1 also belongs to C2 and

inversely, as shown in Fig. 4(d). In this case, all the

nodes are hub nodes, and there are no core nodes, thus

the network reduces to one fully connected network.

IV. MODEL ANALYSIS

When v = 1 as presented by Fig. 4(d) , according to existing

studies, the whole network asymptotically reaches consensus,

i.e. all the nodes either reach opinion α or opinion β and

coexistence is excluded [8]. Obviously, when v = 0 as pre-

sented by Fig. 4(a) , opinions in the two communities evolve

independently from each other, thus the two communities

reach internal consensus separately, and there is a probability

1/2 that the opinion in C1 is the same as in C2, otherwise

their opinions differ. However, the challenging problem is to

find how the opinions evolves in the interval v ∈]0, 1[.
In this paper, we will answer the following question: what

condition of v surely leads the whole network to reach
consensus asymptotically?

A. Basic Equations

We use a0, a1 and a2 to mark the densities of nodes with

opinion α in the hub nodes S0, core nodes S1 of community

C1 and core nodes S2 for community C2 respectively. Sim-

ilarly, b0, b1 and b2 are for opinion β correspondingly. Thus

we have:

a0 + b0 = 1

a1 + b1 = 1

a2 + b2 = 1

(4)

For a node selected randomly, the probabilities that it resides

in S0, S1 and S2 are denoted as p0, p1 and p2, according to

Eq. (3) , we have the following relationships:

p0 =
vn

(2− v)n
=

v

2− v

p1 = p2 =
(1− v)n

(2− v)n
=

1− v

2− v

(5)

By construction, a node Nk in community C1, i.e. either

the core nodes S1 or the hub node S0, are connected to all

the nodes in C1, except Nk itself. The same for a node in

community C2. Considering n1 − 1 ∼ n1, n2 − 1 ∼ n2,

n0 − 1 ∼ n0 and n − 1 ∼ n, the probabilities p10, p11 that

a randomly picked node connected to Nk ∈ C1 resides in S0

and S1 respectively, as well as p20, p22 that a randomly picked
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(a) n = 20, v = 0 (b) n = 20, v = 0.3 (c) n = 20, v = 0.7 (d) n = 20, v = 1

Fig. 4. CFCN. Grey nodes are core nodes, while black nodes are hub nodes.

node connected to Nk ∈ C2 resides in S0 and S2 respectively,

fulfill the following equations:

p10 = p20 =
vn

n
= v

p11 = p22 =
(1− v)n

n
= 1− v

(6)

B. Equations for Intra-community rules
Intra-community rules are to determine the biased opinion

of each picked community for a selected node Nk, following

rules demonstrated in Fig. 1. We analyze the case that Nk ∈
C1, and the case that Nk ∈ C2 is given directly to avoid

redundancy.
The case that community C1 is determined to be biased on

α stands only if the two randomly selected nodes connected

with Nk in C1 all have opinion α, as exhibited by Fig. 1(a).

Obviously the probability that a randomly selected node in C1

has opinion α is a0p10 + a1p11, thus the probability of this

case denoted as p1a can be written by the following equation:

p1α = (a0p10 + a1p11)
2 (7)

In the same way, the probabilities denoted as p1β and p1χ
for the cases that community C1 is determined to be biased on

β as illustrated by Fig. 1(b) and to be unbiased as illustrated

by Fig. 1(c) respectively can be written by the following

equations:

p1β = (b0p10 + b1p11)
2

p1χ = 2(a0p10 + a1p11)(b0p10 + b1p11)
(8)

where a0p10 + a1p11 and b0p10 + b1p11 are the probabilities

that a randomly selected node in C1 has opinion α and beta
respectively.

Similarly, the counter parties of p1α, p1β and p1χ for

community C2, denoted as p2α, p2β and p2χ can be written

as following:

p2α = (a0p20 + a2p22)
2

p2β = (b0p20 + b2p22)
2

p2χ = 2(a0p20 + a2p22)(b0p20 + b2p22)

(9)

C. Equations for Single-community Inter-community Rules

For a randomly selected node Nk belonging to core nodes

set S1 or S2, inter-community rules for single community is

applied to determine how new opinion of Nk should be set,

as demonstrated in Fig. 2.

The evolution of opinions in core node set S1 can be written

as the following master equation:

da1
dt

= p1(b1p1α − a1p1β) (10)

where b1p1α corresponds to the case that the opinion of a node

changes from β to α, and a1p1β corresponds to the reverse

case.

Similarly we have the following master equation for the

evolution of opinions in core node set S2:

da2
dt

= p1(b2p2α − a2p2β) (11)

D. Equations for Two-communities Inter-community Rules

For a randomly selected node Nk belongs to hub nodes

set S0, inter-community rules for two communities is utilized

to determine how new opinion of Nk should be set, as

demonstrated in Fig. 3.

The evolution of opinions in hub node set S0 can be written

as the following master equation:

da0
dt

= p0(E − F )

E = b0(p1αp2χ + p1χp2α + p1αp2α)

F = a0(p1βp2χ + p1χp2β + p1βp2β))

(12)

where E corresponds to the case that the opinion of a node

changes from β to α, and F corresponds to the reverse

case. Within E, item p1αp2χ corresponds to the case that

community C1 is determined to be biased on α and community

C1 is unbiased, item p1χp2α corresponds to the case that

community C1 is unbiased and community C1 is determined

to be biased on α and item p1αp2α corresponds to the case

that both of the two communities C1 and C2 are determined

148114811481148114801480



(a) Stable symmetric state (b) Unstable asymmetric state (c) Stable asymmetric state

Fig. 5. Schematic illustration of equilibrium states

to be biased on α. The items in F correspond to the cases in

the ways similar to those of E.

E. Total Contribution to the Opinion Evolution

From the previous two subsections, the total contributions

to the opinion evolution in the whole network can be written

by combing Eq. (10), Eq. (11) and Eq. (12), as recurred in the

following:

da1
dt

=p1(b1p1α − a1p1β)

da2
dt

=p1(b2p2α − a2p2β)

da0
dt

=p0(b0(p1αp2χ + p1χp2α + p1αp2α)

− a0(p1βp2χ + p1χp2β + p1βp2β))

(13)

F. State Analysis

When da1

dt = da2

dt = da0

dt = 0, the network is in states of

equilibrium. According to Eq. (13), it is straightforward to

show that the following states are equilibrium:

1) a0 = a1 = a2 = 0 or a0 = a1 = a2 = 1. In these cases

all nodes in the network have the same opinion α or β,

e.g. Fig. 5(a).

2) a0 = 0.5, a1 = 1 and a2 = 0 , or a0 = 0.5, a1 = 0, and

a2 = 1. In these cases, all core nodes in one community

have opinion α, all core nodes in the other community

have opinion β, half hub nodes in the network have

opinion α, and the other half hub nodes in the network

have opinion β, e.g. Fig. 5(b).

When all nodes in the network have the same opinion α
or β, the network is in a symmetric state, where the whole

network is frozen, and no change of state takes place any more

along time. When both nodes with α and nodes with beta
coexist in the whole network, the network is in an asymmetric
state, where fluctuations continue to take place.

When in a unstable state, the whole network escapes the

asymmetric state in long enough times, and results in another

unstable state or a stable state. When in a stable state, the

whole network stays at the state with perhaps small deviation,

even if there are continuous fluctuations.

Since a symmetric state is surely to be equilibrium and

stable, the whole network reaches consensus only if it is

in a symmetric state. If the whole network can not reach a

symmetric state along time from the current state, it fails to

reach consensus. An asymmetric state may be of equilibrium

or not, and stable or unstable. It is obvious that with a stable

asymmetric state, the network fails to reach consensus.

Computer simulations reveal that with a big enough value

v, along time the network surely evolves to a symmetric state.

In contrast, with a small enough value of v, along time the

network may evolve to a stable asymmetric state like Fig. 5(c).

Computer simulations show that the asymmetric stable state

is characterized by the forms a1 = 1− ε and a0 = a2 = 0, or

b1 = 1− ε and b0 = b2 = 0, where ε ∈ [0, 1], as schematically

illustrated by Fig. 5(c). Because of the equivalence of the two

forms in the context of this paper, we only consider the form

a1 = 1− ε and a0 = a2 = 0 to avoid redundancy.

To find equilibrium solutions for this form, we should find

the condition where da0

dt = da1

dt = da2

dt . It is straightforward

that da0

dt and da2

dt are always zero, while the equation da1

dt = 0
leads to the following equation:

1

v − 2
(ε− 1)(v − 1)(Xε2 − Y ε+ Z) = 0 (14)

where X = 2(v − 1)2, Y = 3v2 + 4v − 1 and Z = v2.

Obviously, ε = 1 is an solution, which is the case cor-

responding to the symmetric state where all nodes in the

network have the same opinion. In this case, the network is

in equilibrium and stable state whatever the value of v is.

Another obvious solution is v = 1, which is the case that all

nodes in the network are hub nodes, as illustrated in Fig. 4(d).

Considering the form that a1 = 1 − ε and a0 = a2 = 0, in

this case all nodes in the network also have the same opinion

and is stable as well.

Other solutions fulfilling Xε2 − Y ε + Z = 0 are also

possible:

ε± =
−Y ±√Y 2 − 4XZ

2X
(15)

which exist only if Y 2−4XZ ≥ 0, thus we have the following

condition:

(v − 1)2(v2 − 6v + 1) ≥ 0 (16)

Because (v−1)2 ≥ 0 always stands, and the only solution for

(v− 1)2 = 0 is v = 1, which is already introduced above, we

need only consider v2− 6v+1 ≥ 0. Thus we can easily have

the condition for the existing of equilibrium solutions on the

value of v as v ≤ vc, where vc = 3− 2
√
2 ∼ 0.172.

To check under what condition of v that equilibrium solu-

tions shown in Eq. (15) are also stable states of the system,
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we perform stability analysis [9]. First, for an equilibrium

solution, the system is linearized. Denoting the deviations

of a0, a1 and a2 at equilibrium state a1 = 1 − ε and

a0 = a2 = 0 to be δ0, δ1 and δ2 respectively, we have the

following equations:

a0 = δ0

a1 = 1− ε+ δ0

a2 = δ2

(17)

which is then merged into Eq. (13). Then the Lyapunov matrix

M is constructed :

M =

⎡
⎢⎣
m00 m01 m02

m10 m11 m12

m20 m21 m22

⎤
⎥⎦ (18)

where mij can be obtained by the following rule:

mij =
∂di
∂δj

∣∣∣∣
(δ0=0,δ1=0,δ2=0)

(19)

Thus we have:

m00 =− v

v − 2
(2(ε− 1)2v3 − 3(ε− 1)2v2 + ε(ε− 2))

m02 =
2v(ε− 1)2

v − 2
(v − 1)3

m10 =
2v(ε− 1)

v − 2
(v − 1)((2ε− 1)v − 2ε)

m11 =− v − 1

v − 2
((6ε2 − 10ε+ 4)v2

− (12ε2 − 16ε+ 4)v + 6ε2 − 6ε+ 1)

m22 =− v − 1

v − 2
m01 =m12 = m20 = m21 = 0

(20)

Numeric analysis is conducted for v ∈]0, vc[. For any

equilibrium point where ε = ε+ and v ∈]0, vc[, there is exact

one positive eigenvalue in all the three eigenvalues of M ,

hence the equilibrium point is unstable. For any equilibrium

point where ε = ε− and v ∈]0, vc[, all the three eigenvalues

of M are negative, hence the equilibrium point is stable.

Considering the fact shown above that no asymmetric equi-

librium point exists when v >]vc, 1[, as well as the result of

the numeric analysis on eigenvalues of M , the system exhibits

a discontinuous transition at vc:

1) When v < vc, the system may reach either a symmetric

or an asymmetric stable state. An asymmetric stable state

fulfills a1 = 1− ε− and a0 = a2 = 0.

2) When v > vc, only the symmetric state is possible along

time.

To sum up, the system is certain to reach consensus only

if v > vc.

V. EVALUATIONS

A. Verification of Theoretical Analysis

Simulations of the Sznajd2 model are performed on CFCN

as shown in Fig. 6, which demonstrates excellent match with

predictions from theoretical analysis. However, at the location

of the transition where v = vc there is are tiny discrepancies:

1) The transition in the simulations does not appear abso-

lute vertical. This is because that the simulations and

theoretical calculation are performed for v by interval

of 0.1, and Δv=0.17 �= Δv=0.18.

2) Δv=0.18 �= 0. This is because that each simulation is

stopped after 100 steps per node, and for v = 0.18, the

system need more steps to reach stable state.

To sum up, simulations verifies the correctness of theoretical

analysis.

Fig. 6. Bifurcation digram of Δ = ‖a1 − a2‖ as a function of v. The
vertical bar at v = 0.172 indicates the theoretical critical value of v =
vc for the transition from asymmetric stable state to symmetric stable state.
Simulations are performed on a network with n = 4000, started from an
unstable asymmetric state with a0 = 0.5, a1 = 1 and a2 = 0, as illustrated
in Fig. 5(b), and stopped after 100 steps per node.

B. Performances Comparison on CFCN

To compare the consensus performances of the Sznajd2

model to various existing representative community-unaware
opinion dynamics models including Sznajd, MR and voter,

simulations are also performed by apply those models on

CFCN with n = 4000, started from an unstable asymmetric

state with a0 = 0.5, a1 = 1 and a2 = 0, as illustrated in

Fig. 5(b), and stopped after 100 steps per node. Results of

simulations are shown in Fig. 7 and Fig. 8 which demonstrate:

1) Sznajd and MR exhibit bifurcations similar to our model,

however, the transitions are at vc ∼ 0.31 for MR and

vc ∼ 0.33 for Sznajd. Thus to ensure consensus, they

need much more strict community structures.

2) For voter, Δ = ‖a1 − a2‖ decrease to a small value

quickly along with v even when v < 0.1, demonstrating

that the densities of nodes with opinion α in community

C1 and C2 approach almost the same quickly. However

Fig. 8 shows that Δ = ‖a−b‖ is quite small, demonstrat-

ing that there is no dominant opinion in the network, and

even v = 0.5, consensus can not be reached by voter.
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To sum up, our model outperforms existing representative

community-unaware opinion dynamics models on reaching

consensus by requiring more relaxed community structures.

Fig. 7. Δ = ‖a1 − a2‖ as a function of v for CFCN.

Fig. 8. Δ = ‖a − b‖ as a function of v for CFCN, where a and b are the
densities of nodes with opinion α and β in the whole network respectively.

VI. RELATED WORK

Opinion dynamics with communities Opinion dynamics

is a field where mathematical and/or physical models and

computational tools are utilized to explore the dynamical

processes of the diffusion and evolution of opinions in popu-

lation [10]. [11] conducted a comprehensive and influential

survey on opinion dynamics from the perspective of statis-

tics physics. [10] further gave a multidisciplinary review,

concludes that opinion dynamics models follow a bottom-

up modeling approach to study the aggregate dynamics of

opinions, which is determined by three key features: the

representation of the opinions, the local rules for the agents

influence each other to change their opinions, and the overall

social structure that interlinks the agents. The MR opinion

dynamics model on a network with communities is first studied

in [7], which showed that a transition takes place at a value

of the interconnectivity parameter. [4] furtherly studies the

MR with probability model on two coupled random networks

in a similar approach. [2] performed simulation on Sznajd
model in the scale-free networks with the tunable strength of

community structure, and found that the smaller the commu-

nity strength, the larger the slope of the exponential relaxation

time distribution. [12] examine the mean consensus time of

the voter model in the so-called two-clique graph, and showed

that as the number of interclique links per node is varied, the

mean consensus time experiences a crossover between a fast

consensus regime and a slow consensus regime. [13] studied

a nonlinear q-voter model with stochastic noise, interpreted

in the social context as independence, on a duplex network,

and provided evidence that even a simple rearrangement into

a duplex topology may lead to significant changes in the

observed behavior. However, studies mentioned above are

conducted from the perspective of various existing rules on

community structures, but the rules themselves does not take

the community factor into consideration.

Sznajd and variations The Sznajd model was one of the

most studied models of opinion dynamics in the last years,

defined under the name USDF (united we stand, divided we

fall) as a model where the society is represented by a linear

chain, and people can have one of two opposite opinions

[14]. The basic principle of the model is that convincing

somebody is easier for two or more people than for a single

individual [11]. The model has been employed to describe

a wide variety of sociophysics situations in the past decade,

such as marketing, finance, and politics [15]. With its wide

application, it has been modified in a variety of ways [15],

[11], including being adapted to a general network [8]. To

examine how different types of social influence, introduced

on the microscopic (individual) level, manifest on the macro-

scopic (society) level, [16] proposed a generalized model

of opinion dynamics, that reduces to the linear voter model,

Sznajd model, q-voter model and the majority rule model as

special cases. However, no variation of Sznajd related with

community structures are proposed yet.

Consensus on P2P networks Consensus is a fundamental

problem for reliable distributed system to achieve agreement

among distributed nodes on a value or an action [17].

Traditional consensus algorithms designed for cluster envi-

ronments can not work in P2P networks whose participants

numbers are unknown. To deal with this problem, graph theory

based algorithms are proposed, but they are sensitive to the

topology of the graph [18], [19]. Pseudo leader election

based algorithms are also proposed, but they can only deal

with crash failure [20]. Some other algorithms have strong

assumptions on properties of the P2P networks, thus can not

be applied in general networks [21]. Random walk based

Byzantine consensus can tolerant topology change as well as

heavy churn and achieve almost-everywhere agreement with

high probability [22]. However, none of the above algorithms
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can survive Sybil attack, wherein the attacker creates a large

number of pseudonymous identities, and use them to gain

a disproportionately large influence [23]. Bitcoin provides

Sybil-proof consensus mechanism through an ongoing chain

of hash-based proof-of-work(PoW) [24], however, it can not

survive attack with dominant compute power. Relationships

based algorithms are considered to be more robust than other

approaches against Sybil attack [25], and [5] firstly proposed

a relationships based algorithm, but its performance decrease

dreadfully with the presence of community structures.

VII. CONCLUSION

This paper observes scenarios where existing models can

not describe the opinion dynamics well, or can not reach

consensus with satisfying performance. Based on the obser-

vations, we propose a community-aware opinion dynamics

model called Sznajd2, and analyze it theoretically. Simulations

verify the result of theoretical analysis, and demonstrate that

our model outperforms existing representative community-

unaware opinion dynamics models by reaching consensus

considerably faster, and requiring remarkable more relaxed

community structures.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science

Foundation of China (Grant No. 61433008), the National

High Technology Research and Development Program of

China (Grant No. 2013AA013201), and Project of science and

technology of Beijing City (Grant No. D151100000815003).

Special thanks go to Wanxiang Blockchain Labs sponsorship

program (BlockGrantX #1: Genesis).

REFERENCES

[1] M. Girvan and M. E. J. Newman, “Community structure in social and
biological networks,” Proceedings of the National Academy of Sciences,
vol. 99, no. 12, pp. 7821–7826, 2002.

[2] W. Ru and C. Li-Ping, “Opinion Dynamics on Complex Networks with
Communities,” Chinese Physics Letters, vol. 25, p. 1502, Apr. 2008.

[3] R. Ghosh and K. Lerman, “The Impact of Network Flows on Com-
munity Formation in Models of Opinion Dynamics,” The Journal of
Mathematical Sociology, vol. 39, no. 2, pp. 109–124, 2015.

[4] R. Lambiotte and M. Ausloos, “Coexistence of opposite opinions in a
network with communities,” Journal of Statistical Mechanics: Theory
and Experiment, vol. 2007, pp. P08026–P08026, Aug. 2007.

[5] H. Chen and J. Shu, “Sky: Opinion Dynamics Based Consensus for
P2p Network with Trust Relationships,” in Algorithms and Architec-
tures for Parallel Processing - 15th International Conference, ICA3PP
2015, Zhangjiajie, China, November 18-20, 2015. Proceedings, Part III,
pp. 517–531, 2015.

[6] Y. Cao, “Consensus of multi-agent systems with state constraints: a
unified view of opinion dynamics and containment control,” in American
Control Conference (ACC), 2015, pp. 1439–1444, July 2015.

[7] R. Lambiotte, M. Ausloos, and J. A. Hoyst, “Majority model on
a network with communities,” Physical Review E, vol. 75, no. 3,
p. 030101, 2007.

[8] F. Slanina and H. Lavicka, “Analytical results for the Sznajd model
of opinion formation,” The European Physical Journal B - Condensed
Matter and Complex Systems, vol. 35, pp. 279–288, Sept. 2003.

[9] G. Nicolis, Introduction to Nonlinear Science. Cambridge University
Press, 1995.

[10] H. Xia, H. Wang, and Z. Xuan, “Opinion Dynamics: A Multidisciplinary
Review and Perspective on Future Research,” Int. J. Knowl. Syst. Sci.,
vol. 2, no. 4, pp. 72–91, 2011.

[11] C. Castellano, S. Fortunato, and V. Loreto, “Statistical physics of social
dynamics,” Reviews of Modern Physics, vol. 81, no. 2, pp. 591–646,
2009.

[12] N. Masuda, “Voter model on the two-clique graph,” Physical Review E,
vol. 90, no. 1, p. 012802, 2014.

[13] A. Chmiel and K. Sznajd-Weron, “Phase transitions in the q-voter model
with noise on a duplex clique,” Physical Review E, vol. 92, no. 5,
p. 052812, 2015.

[14] K. Sznajd-Weron and J. Sznajd, “Opinion Evolution in Closed Commu-
nity,” International Journal of Modern Physics C, vol. 11, pp. 1157–
1165, 2000.

[15] D. Stauffer, “Sociophysics: the Sznajd model and its applications,”
Computer Physics Communications, vol. 146, no. 1, pp. 93–98, 2002.

[16] P. Nyczka and K. Sznajd-Weron, “Anticonformity or Independence?—
Insights from Statistical Physics,” Journal of Statistical Physics,
vol. 151, pp. 174–202, Feb. 2013.

[17] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the
presence of faults,” J. ACM, vol. 27, no. 2, pp. 228–234, 1980.

[18] F. Greve and S. Tixeuil, “Knowledge connectivity vs. synchrony re-
quirements for fault-tolerant agreement in unknown networks,” in Pro-
ceedings of the 37th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN ’07, (Washington, DC, USA),
pp. 82–91, IEEE Computer Society, 2007.

[19] E. A. Alchieri, A. N. Bessani, J. Silva Fraga, and F. Greve, “Byzantine
consensus with unknown participants,” in Proceedings of the 12th
International Conference on Principles of Distributed Systems, OPODIS
’08, (Berlin, Heidelberg), pp. 22–40, Springer-Verlag, 2008.

[20] C. Delporte-Gallet, H. Fauconnier, and A. Tielmann, “Fault-tolerant
consensus in unknown and anonymous networks,” in Proceedings of the
2009 29th IEEE International Conference on Distributed Computing
Systems, ICDCS ’09, (Washington, DC, USA), pp. 368–375, IEEE
Computer Society, 2009.

[21] H. Moniz, N. Neves, and M. Correia, “Byzantine fault-tolerant consensus
in wireless ad hoc networks,” IEEE Transactions on Mobile Computing,
vol. 12, no. 12, pp. 2441–2454, 2013.

[22] J. Augustine, G. Pandurangan, and P. Robinson, “Fast Byzantine
Agreement in Dynamic Networks,” in Proceedings of the 2013 ACM
Symposium on Principles of Distributed Computing, PODC ’13, (New
York, NY, USA), pp. 74–83, ACM, 2013.

[23] J. R. Douceur, “The sybil attack,” in Revised Papers from the First
International Workshop on Peer-to-Peer Systems, IPTPS ’01, (London,
UK, UK), pp. 251–260, Springer-Verlag, 2002.

[24] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system.” http:
//www.bitcoin.org/bitcoin.pdf, 2009.

[25] L. Alvisi, A. Clement, A. Epasto, S. Lattanzi, and A. Panconesi, “SoK:
The evolution of sybil defense via social networks,” in Proceedings of
the 2013 IEEE Symposium on Security and Privacy, SP ’13, (Washing-
ton, DC, USA), pp. 382–396, IEEE Computer Society, 2013.

148514851485148514841484


